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SUMMARY

The dispersion of solid particles in a turbulent liquid flow impinging on a centrebody through an
axisymmetric sudden expansion was investigated numerically using a Eulerian–Lagrangian model.
Detailed experimental measurements at the inlet were used to specify the inlet conditions for two-phase
flow computations. The anisotropy of liquid turbulence was accounted for using a second-moment
Reynold stress transport model. A recently developed stochastic–probabilistic model was used to
enhance the computational efficiency of Lagrangian trajectory computations. Numerical results of the
stochastic–probabilistic model using 650 particle trajectories were compared with those of the conven-
tional stochastic discrete-delta-function model using 18 000 particle trajectories. In addition, results of the
two models were compared with experimental measurements. © 1998 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids 26: 345–364 (1998)

KEY WORDS: liquid–particle flow; computational efficiency; Eulerian–Lagrangian model

1. INTRODUCTION

Dispersed liquid–solid flows find wide applications in a variety of industrial processes, e.g.
hydrocyclones and hydraulic conveying, and in hydroelectric engineering, where water turbines
are often operated in silt-laden rivers. Therefore it is of great importance to study such a
category of two-phase flows.

Dispersed two-phase flows are characterized by the presence of a continuous phase and a
particulate phase. As one of the widely adopted numerical approaches for handling particulate
two-phase flows, the Eulerian–Lagrangian model treats the continuous phase using a Eulerian
formulation and the dispersed phase using a Lagrangian formulation. The dispersion of
discrete particles due to the continuous phase turbulence is accounted for by a stochastic
procedure. Numerical investigations of two-phase flows can be found in References [1–8],
among others. A recent complete review of numerical models for two-phase turbulent flows
can be found in Reference [9].

For the computation of laminar two-phase flows, no Lagrangian stochastic model is
required [10]. The recent computation of an unsteady water droplet spray [11] also neglected
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the effect of fluid turbulence on droplet dispersion. However, a stochastic Lagrangian
trajectory model has to be used when computing turbulent two-phase flows using a Eulerian–
Lagrangian hybrid model; otherwise, particle dispersion will be seriously underpredicted. It is
widely recognized, however, that the Lagrangian stochastic model often requires computing
thousands of individual particle trajectories to attain a stochastically significant solution.
Mostafa et al. [12] reported that 100 000 particle trajectories were necessary for computing the
monodispersed particle laden jet. Adeniji-Fashola and Chen [13] achieved the smoothest
profiles of predictions using a total of 9000 computational particle trajectories for a confined
particle-laden jet. Chang and Wu [6] found that a large number (20 000) of droplet trajectories
were required to reach an invariant solution for the polydispersed hollow cone spray. Chen
and Pereira [14] performed a study of the sensitivity of droplet properties to various
parameters, including the number of droplet trajectories, for the turbulent evaporating spray.
It was found that 10 000 droplet trajectories were necessary to achieve an invariant solution for
the turbulent, polydispersed, evaporating spray. Recently, Sato et al. [7] employed about
33 000 particle trajectories to compute a monosized particle-laden planar turbulent jet.
Obviously, the more particle trajectories that are tracked, the more computer CPU time will be
required for the Lagrangian solver; therefore it is probable that computations of three-dimen-
sional dispersed turbulent two-phase flows will require hundred of thousands of particle
trajectories.

Evidently, to compute dispersed turbulent two-phase flows, an approach is needed which is
efficient in computation, accurate in prediction and simple in theoretical background. To this
end, a new stochastic–probabilistic efficiency-enhanced dispersion (SPEED) model was devel-
oped by Chen and Pereira [15], seeking to track a relatively small number of particle
trajectories but offering computational noise-free or noise-reduced solution. The SPEED
model adopts the conventional stochastic discrete-delta-function (SDDF) model developed by
Gosman and Ioannides [16], but it is distinguished from the SDDF model because an
additional probabilistic model is developed to account for the probabilistic distribution of a
physical particle in space. Such a stochastic–probabilistic algorithm is aimed at realizing the
objective of achieving a stochastically significant solution by tracking a minimum number of
particle trajectories. As a consequence, the computational efficiency of Lagrangian trajectory
calculations can be greatly enhanced.

Another aspect related to the Eulerian–Lagrangian model is that the accuracy of its
numerical predictions is often limited by the uncertainty of incomplete experimentally specified
initial conditions; as a result, the specification of detailed inlet conditions for Lagrangian
computations plays an important role in appropriately assessing Lagrangian stochastic models
[17–19]. Evidently, the validation of two-phase flow models is unfavourably influenced by the
uncertainty of assuming inlet conditions. Therefore the present two-phase flow predictions
were carried out using available complete initial conditions from measurements.

The objective of this study is to investigate a dilute particle-laden turbulent liquid flow using
the efficient SPEED model of Chen and Pereira [15]. This model includes both stochastic and
probabilistic computations. The stochastic computation of particle trajectories, obtained with
a conventional stochastic model, determines the motion of the locus of the trajectory centre,
while the probabilistic computation of trajectory variances, obtained with an additional
ordinary differential equation, determines the spatial distribution of physical particles. Well-
specified experimental measurements [20] for a dispersed liquid–solid flow were used to
provide complete initial conditions for two-phase flow computations; as a result, the uncer-
tainty of inlet conditions on model validation was ruled out. The computational efficiency and
accuracy of the SPEED model are assessed by making comparisons with the stochastic
discrete-delta-function model and experimental measurements.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 345–364 (1998)
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2. EULERIAN EQUATION FOR LIQUID PHASE

Most of the existing turbulence models for the continuous phase in two-phase flow predictions
are based on the k–o model [3,6]. However, this turbulence model cannot account for the
anisotropy of turbulence, which is observed in the flow investigated here. Therefore the
second-moment Reynolds stress closure model was used for the fluid phase to better account
for the anisotropy of turbulence. The governing equations for mass, momentum and Reynolds
stresses can be written tensorially as
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where Pij and fij denote the generation and the pressure–strain correlation respectively. The
generation term is defined as
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The pressure–strain correlation term fij consists of a slow part fij,1 and a fast part fij,2, as well
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where the production G=Pkk/2. The near-wall isotropization of production is given by
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where ni stands for the unit vector of the i-component normal to the wall; the subscript k takes
the same value as l but without summation. The two components of the function fk are given
by

fx=0.41k1.5/oxw, fy=0.41k1.5/oyw. (9)

The source terms SUi

p and S
uiuj

p arise from the liquid–particle interactions and are determined
in Lagrangian trajectory computations. A description of the terms can be found elsewhere
[3,14]. The equation for the dissipation rate of the turbulent kinetic energy is
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where the turbulence modulation term is given by
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The values of the model constants used in the foregoing equations are
(Cs, C1, C2, C %1, C %2, Co, Co1, Co3)= (0.22, 1.8, 0.6, 0.5, 0.3, 0.15, 1.45, 1.9, 1.1).

3. LAGRANGIAN EQUATIONS FOR PARTICLE PHASE

To account for the lift force induced by the fluid velocity gradient, the lift force is included in
the equation of motion of a particle, together with the drag and gravity forces. In addition, the
relatively lower ratio of the particle density to the water density requires including the added
mass term. As a result, the equation of motion for each of the representative particle sizes can
be written tensorially as
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where U0 i is the fluid (liquid) instantaneous velocity. The relaxation time of a particle, tp, is
defined as

tp=rpDp
2/18mfp, (13)

where the drag correction coefficient fp is determined by

fp=1+0.15Rep
0.687 (0BRepB1000). (14)

The relative Reynolds number in (14) is defined as

Rep=rVrelDp/m, (15)

with Vrel being the relative velocity between the two phases. The particle trajectories are
computed by

dxpi

dt
=U0 pi. (16)

Note that it is impossible to determine the fluid instantaneous velocity gradient (U0 j/(xm in (12)
at the particle position; therefore the mean fluid velocity gradient was used. Such a treatment
is similar to the method of Sato et al. [7], who used the fluid instantaneous velocity at the
particle position and the mean fluid velocity on the Eulerian grid near the particle to estimate
the velocity gradient.

4. STOCHASTIC–PROBABILISTIC PARTICLE DISPERSION MODEL

The stochastic–probabilistic trajectory model consists of both stochastic and probabilistic
computations. The stochastic computation basically follows the approach of Reference [16] by
using the instantaneous continuous phase velocity to account for the effects of particle
dispersion induced by continuous phase turbulence. However, the fluctuating velocity is
randomly sampled from local turbulent normal stresses, instead of the local turbulent kinetic
energy, in terms of particle–eddy encounters to account for the anisotropy of turbulence on
particle dispersion, as discussed by Chen and Pereira [14]. Even though such a modification has
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Figure 1. Variation of exponential function with integral time

accounted for the effects of the anisotropy of turbulence on particle dispersion, there still exists
another deficiency that a ‘too large’ number of particle trajectories are necessarily tracked to
achieve a stochastically significant or invariant solution, thus consuming a great amount of
computer CPU time. This can be explained as follows. In the conventional Lagrangian
stochastic model the particle trajectory computed with (16) represents a single point in space.
In other words, the discrete-delta-function model is used for the distribution of a physical
particle in space; therefore it requires tracking too many individual particle trajectories to
achieve the stochastically significant solution.

To enhance the computational efficiency, the SPEED model is used, which performs a
probabilistic computation, in addition to the stochastic computation, at each Lagrangian time
step along a particle trajectory. The probabilistic computation is based on a computed
trajectory variance and an assumed probability density function. The equation governing the
particle trajectory variance can be derived from its definition [15]. The final equation can be
written tensorially as

dspi
2

dt
=2dij

& t

0

�upj(t)upj(t1)� dt1, (17)

Figure 2. Isosceles triangle probability density function
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Figure 3. Configuration of axisymmetric sudden-expansion flow

where � � denotes the ensemble-averaging procedure and �upj(t)upj(t1)� represents the correla-
tion of particle velocity fluctuations between time intervals t and t1. Evidently, no direct
information is available for this particle velocity correlation along its trajectory. However, the
use of a turbulence closure model (namely the Reynolds stress model) can provide us with the
predicted Reynolds stresses of the continuous phase. Therefore an expression may be derived
to relate the velocity fluctuations of the particle phase to those of the fluid phase, i.e.

�upj(t)upj(t1)�=Vpj�uj(t)uj(t1)� (no summation), (18)

where �uj(t)uj(t1)� represents the correlation of the velocity fluctuations for fluid tracers and
Vpj accounts for the slipping effects between the two phases and is necessarily determined. This
problem is similar to the modelling of particle turbulent viscosity in the twin-fluid modelling
of particle-laden turbulent flows [13,21]. Following Rizk and Elghobashi [21], this parameter
can be estimated by
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�
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2

�ui
2�
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where �ui
2� is the normal stress component at the particle position. The model constants Cb

and sp are necessarily estimated. Of course, other expressions may also be possible, as long as
they can adequately account for the two-phase slipping effects. To determine the fluid velocity
correlation, a Lagrangian autocorrelation function RLi(t) is used,

RLi(t)=
�uj(t)uj(t+t)�

�uj
2(t)� dij, (20)

where t= t1− t. Following Berlemont et al. [3], the autocorrelation function can be estimated
using a Frenkiel correlation function as
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Introducing (21) into (17) and performing integration in part, Equation (17) can be rewritten
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Under the assumption that a very small time step Dt is used, Equation (23) can be
approximately integrated [22] as
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Figure 4. Measured and predicted liquid streamwise mean velocity
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It can be proven that the right-hand side of (24) is always positive, as physically required.
Shown in Figure 1 is the vibration of f(a)=1−exp(−a) sin a with a, where a is defined as
Dt/2TLj. Note that the Lagrangian advance step for integration is chosen in such a way that
it is always smaller than 20% of the integral time scale.

It should be stressed that the trajectory determined with (16) only represents the locus of the
trajectory centre at each Lagrangian advance step for the SPEED model. Simultaneously,
particle trajectory variances are determined from (17) to account for the dispersive effect
induced by turbulence. Therefore, given a probability density function (PDF) f(x, y), the
distribution of a physical particle in Eulerian control volumes can be determined. It follows
that the ensemble-averaged particle property can be obtained by
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where the summation over k represents all the particle sizes crossing the Eulerian control
volume in question, with M being the total number of particle trajectories. N: k in (25) denotes
the particle number flow rate of the kth particle and the product of N: k and Dtk stands for the
total number of particles in the Eulerian control volume. The two-way coupling source is
computed by
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where Sfk

p is determined in Lagrangian trajectory computations via two-way coupling expres-
sions in terms of exchanges in momentum and energy. Note that (xp, yp) in (25) and (26)
represents the current particle position and that a prescribed PDF is required to determine the
particle probability distribution in these equations. The Gaussian PDF may be one of the
adequate PDFs to represent a variety of flows. However, Litchford and Jeng [23] carried out
a sensitivity study of the effects of PDF shapes on Lagrangian computations and found that
a simplified isosceles triangle PDF may replace the Gaussian PDF, thus enhancing the code
efficiency. Therefore the isosceles triangle PDF, as shown in Figure 2, is used for the present
study. It should be pointed out that the SPEED model is different from the stochastic
dispersion width transport model of Litchford and Jeng [24], in that the SPEED model
determines the trajectory variance using the ordinary differential equation, i.e. (17), whereas
the stochastic dispersion width transport model computes the dispersions width using the
concept of particle–eddy encounters, which involves many repeated summing operations, as
discussed by Chen and Pereira [25]. Consequently, the SPEED model offers higher computa-
tional efficiency than the stochastic dispersion width transport model.

Given the trajectory mean and variance, the isosceles triangle probability density function
can be determined. However, particular attention should be paid to computing the radial
component of the cumulative distribution function for axisymmetric flow configurations. The
axisymmetric cumulative function at any radius r is defined as the volume swept out by the
planar region of the PDF bounded between −r and r as it is revolved 360° about the axis of
symmetry [23]. Detailed discussion of this issue can be found in Reference [24]. The final
cumulative distribution function for the radial component at any radial position r can be
determined as follows.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 345–364 (1998)
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Figure 5. Measured and predicted liquid (a) streamwise and (b) radial RMS velocities
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Here the terms Pa, Pb, Pc, Pd and Pe are given by
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where spi
� = (2
3)spi and rp refers to the particle radial position. In order to evaluate the

computational efficiency of the SPEED model, the modified SDDF model [14] was also used
for Lagrangian computations. This model accounts for the effects of fluid turbulence an-
isotropy on discrete particle dispersion.

5. COMPUTATIONAL DETAILS

Shown in Figure 3 is the flow configuration together with the main geometric parameters.
Experimental measurements indicate that the flow can be approximately assumed to be
axisymmetric. Hence axisymmetric computations were carried out. To improve the mass flux
prediction for axisymmetric two-phase flows, a drift correction algorithm developed by Chen
and Pereira [14] was adopted to overcome the mass flux accumulation near the centreline.

The fluid Reynolds number was 5.6×104 based on the maximum inlet fluid velocity and the
smaller pipe diameter. The streamwise dimension for flow computation was taken to be 85
mm, starting from the pipe expansion. The computational domain was covered by a grid of
110×72 nodes in the streamwise and radial directions respectively. This grid was chosen as a
result of grid independence tests. It was found that it gave a solution similar to that using
220×144 nodes. The initial conditions for the Eulerian equations were obtained by interpolat-
ing the measurements. The convective terms in these equations were discretized using a
third-order QUICK algorithm. In the wall-adjacent region the conventional wall function
method was used to modify the momentum equations and turbulent generations. The
near-wall normal stresses were obtained by the usual solution of their corresponding equations
under the assumption of zero diffusion to the wall. The numerical solution of the fluid phase
was based upon a solution procedure developed by Patankar and Spalding [26]. Regarding the
dispersed phase, the available detailed measurements at the inlet were used as input for initial
Lagrangian conditions. Experimental measurements provided particle properties, such as mean
and fluctuating velocities, at the inlet for radial positions 0, 1, 2, 3 and 4 mm from the
centreline. Therefore the initial distribution of particle sizes and velocities was selected to
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conform with the experimental measurements so that an adequate number of representative
particles could be obtained. The particle–wall interaction was based on a simplified model [27].
To achieve a stochastically significant solution, 18 000 particle trajectories were tracked for the
conventional SDDF model. However, 650 particle trajectories were tracked for the SPEED
model. Therefore the number of particle trajectories used for the SPEED model is only 3.6%
of that used for the SDDF model.

6. RESULTS AND DISCUSSION

Experimental measurements are available for several radial profiles of flow properties down-
stream of the inlet. Therefore these measured profiles were used to validate the present model
predictions. Figure 4 shows the predicted and measured profiles of the liquid streamwise mean
velocity at several downstream stations, ranging from X=1 to 55 mm. Excellent agreement
was achieved between the numerical predictions and the measurements, considering the slight

Figure 6. Liquid flow streamlines and particle trajectories

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 345–364 (1998)
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Figure 7. Effects of added mass term on (a) streamwise and (b) radial RMS velocities

asymmetry of the measurements. The streamwise and radial components of liquid fluctuating
velocities are displayed in Figures 5(a) and 5(b) respectively. Overprediction of the normal
stresses is observed for both streamwise and radial components. This may be attributed to the
use of the standard second-moment closure model, which does not account for the effects of
strong flow curvature caused by the centrebody. However, the anisotropy of turbulence was
still captured with the present standard second-moment closure model.

To gain an intuitive impression of how particles interact with the fluid motion, Figure 6
shows the liquid flow streamlines together with some selected particle trajectories. Note that
the symbol sizes in the figure are directly proportional to the real particle sizes. It can be seen
that the largest particles are only slightly influenced by the liquid flow. However, the smallest
particles are strongly influenced by the motion of the liquid flow. Such particle dispersion
mechanisms have been explained by Crowe et al. [28] using a Stokes number defined as the
ratio of the particle relaxation time to the flow characteristic time. The larger particles, with
large Stokes numbers, are sluggish in following the motion of the fluid flow. They are moving
directly downwards to impinge on the centrebody owing to their inertial effects. However, the
smaller particles, with small Stokes numbers, are more responsive to the change in the fluid

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 345–364 (1998)
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flow. It can be seen that some of the particles can follow the vortical motion in the
recirculating zone.

The effects of the added mass term on the predicted particle properties are shown in Figures
7(a) and 7(b) for the particle streamwise and radial RMS velocities respectively, where the full
line (SDDF 1) represents the SDDF predictions accounting for the added mass term and the
broken line (SDDF 2) denotes the SDDF predictions excluding the added mass term. It can be
seen that the inclusion of the added mass term has improved the predicted particle RMS
velocities. However, the improvement is not very pronounced. This is because of the predom-
inant drag force in the equation of motion of a particle. It was found that the drag force
preponderates over the added mass term owing to the very small particle relaxation time of
(13). The effects of the added mass term on the particle number-mean diameter are shown in
Figure 8. It is seen that the inclusion of the added mass term slightly improves the predicted
diameter profiles. Note that the mean velocity profiles are not plotted here because no
discernible descrepancy can be observed between the two predictions within plotting accuracy.
In addition, it was found that the effect of the lift force on the predicted particle global
properties is also relatively small, even though it had some influence on the motion of the
individual particles.

Figure 8. Effects of added mass term on particle number-mean diameter

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 345–364 (1998)
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Figure 9. Two model predictions of (a) streamwise and (b) radial mean velocities

The evaluation of the SPEED model can now be obtained by comparing its predictions with
the measurements [20]. It should be kept in mind that the SPEED model solely tracks 650
particle trajectories, i.e. much fewer than the 18 000 particle trajectories tracked by the SDDF
model. As a reference, numerical results of the SDDF model are also presented together for
direct comparison, and the following predictions have included the added mass term. It is
known that the absolute computer CPU time depends on the computer itself. Therefore the
relative time could be adequately used as a parameter to assess the efficiency of the SPEED
and SDDF models. It was found that each Lagrangian tracking computation with the SPEED
model required only about 8% of the CPU time needed by the SDDF model. Obviously, as far
as the computational efficiency is concerned, the SPEED model is much more efficient than the
SDDF model.

The accuracy and smoothness of the SPEED predictions are evaluated by presenting the
radial profiles at different downstream stations and comparing them with available measure-
ments. Figures 9(a) and 9(b) show the predicted and measured radial profiles of the particle
streamwise and radial mean velocities respectively. Note that the full line represents the
SPEED predictions and the broken line stands for the SDDF predictions. It is evident that
even though the particle trajectory numbers differ greatly between the two trajectory models,
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only a slight descrepancy exists between their predictions. The two predictions are in good
agreement with the experimental measurements. This also corroborates the conclusion [14] that
particle mean velocities are usually not sensitive to the number of particle trajectories.

The particle fluctuating velocities predicted with the SPEED and SDDF models are
compared in Figures 10(a) and 10(b), together with the measurements, for the streamwise and
radial components respectively. For the radial fluctuating velocity the two model predictions
are slightly different from each other and are in satisfactory agreement with the experimental
measurements, though slightly better agreement is obtained with the SPEED model. Of
particular note is that the radial profiles of the SPEED predictions are smoother than those of
the SDDF model, even though they are obtained using only 650 particle trajectories. This
behaviour is attributed to the probabilistic procedure used in the SPEED model. Figure 10(a)
indicates that the streamwise particle fluctuating velocity is overpredicted by the SPEED model
compared with the SDDF model, regardless of the smoother profiles yielded by the SPEED
model. This behaviour can be explained by the overpredicted fluid fluctuating velocities, shown
in Figures 5(a) and 5(b), and by the expression of (17) which suggests that the particle
trajectory variance is proportional to the fluid normal stresses. Therefore overpredicted fluid

Figure 10. Two model predictions of (a) streamwise and (b) radial RMS velocities
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Figure 11. SPEED predictions of streamwise RMS velocity using reduced variance

normal stresses will lead to overpredicted particle trajectory variances. As a result, the
computed particle dispersion in the SPEED model is overpredicted. Such reasoning can be
proven by using a reduced particle trajectory variance. Figure 11 shows the radial profiles of
the particle streamwise fluctuating velocity predicted using 85% of the computed radial
trajectory variance. It is clear that the overpredicted particle streamwise fluctuating velocity in
Figure 10(a) is improved as a result.

Figure 12 shows the evolving radial profiles of the particle number-mean diameter. It is
demonstrated that much smoother profiles are obtained with the SPEED model. Of interest is
that the experimental measurements exhibit some asymmetry and that the numerical predic-
tions show a larger deviation from the measurements between X=20 and 35 mm than in the
other region. This is mainly attributed to the unfavourable influence of flow recirculation there;
see Figure 6. Theoretically, only small particles having small Stokes numbers are responsive to
the change in liquid flow, as explained by Crowe et al. [28]. For the flow studied, the larger
particles having larger Stokes numbers are not easily influenced by the gas flow, but move
directly downwards owing to larger inertia. As a result, a small particle mean diameter is
present in the recirculating zone. Therefore the numerical predictions are physically reasonable.
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There must be some experimental errors in the diameter measurements. Finally, the profiles of
the predicted particle mass flux are compared in Figure 13. The two model predictions are
generally agreeable. Once again the measurements are axisymmetric, especially in the region
between X=20 and 35 mm.

7. CONCLUDING REMARKS

An efficient Lagrangian trajectory model (SPEED) was employed to predict particle dispersion
in a turbulent liquid flow. This model overcomes the drawbacks of conventional stochastic
discrete-delta-function models but retains their advantages. The SPEED model is characterized
by its high computational efficiency, accurate numerical predictions and simple theoretical
background, which makes it easy to incorporate into existing Lagrangian stochastic models.
To achieve a stochastically significant solution, it was found that the SPEED model required
tracking a substantially smaller number of particle trajectories than the stochastic discrete-
delta-function model. Concerning computer CPU time, it was found that each Lagrangian

Figure 12. Two model predictions of particle number-mean diameter
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Figure 13. Two model predictions of particle mass flux

tracking computation using the SPEED model required only about 8% of the computer CPU
time needed by the SDDF model for the present flow, thus substantially enhancing the
computational efficiency of Lagrangian trajectory calculations. In addition, it was found that
the numerical results of the SPEED and SDDF models generally agreed, even though there
was a large difference in the numbers of particle trajectories tracked. Furthermore, it was
found that the slightly overpredicted particle streamwise fluctuating velocity by the SPEED
model can be attributed to the overpredicted liquid phase fluctuating velocities. This difficulty,
however, may be overcome by using improved versions of turbulent Reynolds stress models.
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APPENDIX A. NOMENCLATURE

model constant (=0.85)Cb

particle diameterDp

turbulent kinetic energyk
P pressure

timet
axial mean velocityU

V radial mean velocity
axial co-ordinatex
radial co-ordinatey, r

Greek letters

dissipation rate of ko

m laminar dynamic viscosity
r density

model constant (=1.5)sp

Subscripts

i, j, k Cartesian components
p particle phase

Superscripts

lower boundaryl
u upper boundary
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